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1. QSAR identifier 

1.1. QSAR identifier (title): 

IFSQSAR HHLB v1; QSAR for whole body biotransformation half-life in reference human, Arnot, 
Brown, and Wania 2014 

1.2. Other related models: 

IFSQSAR HHLT v1; QSAR for whole body total elimination (terminal) half-life in humans, Arnot, 
Brown, and Wania 2014 

1.3. Software coding the model: 

IFSQSAR python package, HHLB v1 is included in versions 1.0.0 and up. 

Model is coded in python, with openbabel used for chemistry and numpy used for 
mathematics. 

 

2. General information 

2.0. Abstract 

From the paper abstract: The whole body, total elimination half-life (HLT) and the whole body is 
a key parameter determining the extent of bioaccumulation, biological concentration, and risk 
from chemical exposure. A one-compartment pharmacokinetic (1-CoPK) mass balance model 
was developed to estimate organic chemical HLB from measured HLT data in mammals. 
Approximately 1900 HLs for human adults were collected and reviewed and the 1-CoPK model 
was parametrized for an adult human to calculate HLB from HLT. Measured renal clearance 
and whole-body total clearance data for 306 chemicals were used to calculate empirical 
HLBemp. The HLBemp values and other measured data were used to corroborate the 1-CoPK HLB 
model calculations. The automated Iterative Fragment Selection (IFS) method was applied to 
develop and evaluate various quantitative structure−activity relationships (QSARs) to predict 
HLB from chemical structure. The HLB QSAR shows similar statistical performance for training 
and external validation sets. 

2.1. Date of QMRF 

8 March 2025 

2.2. QMRF author(s) and contact details 

Trevor N. Brown – trevor.n.brown@gmail.com 

2.3. Date of QMRF update(s) 

NA 



2.4. QMRF update(s) 

NA 

2.5. Model developer(s) and contact details 

Jon A. Arnot – ARC Arnot Research & Consulting, Toronto, ON, Canada; Department of Physical 
and Environmental Science, University of Toronto, ON, Canada; Department of 
Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada 

Trevor N. Brown – ARC Arnot Research & Consulting, Toronto, ON, Canada 
trevor.n.brown@gmail.com 

Frank Wania – University of Toronto Scarborough, Department of Physical and Environmental 
Sciences, Toronto, ON, Canada 

2.6. Date of model development and/or publication 

2014 

2.7. Reference(s) to main scientific papers and/or software package 

[1] Arnot, J.A., T.N. Brown, and F. Wania, Estimating screening-level organic chemical half-lives 
in humans. Environmental Science & Technology, 2014. 48(1): p. 723-30. 

[2] Brown, T.N., Predicting hexadecane-air equilibrium partition coefficients (L) using a group 
contribution approach constructed from high quality data. SAR and QSAR in Environmental 
Research, 2014. 25(1): p. 51-71.  

[3] Brown, T.N., J.A. Arnot, and F. Wania, Iterative fragment selection: a group contribution 
approach to predicting fish biotransformation half-lives. Environmental Science & Technology, 
2012. 46(15): p. 8253-60. 

[4] Brown, T.N., J.M. Armitage, and J.A. Arnot, Application of an Iterative Fragment Selection 
(IFS) Method to Estimate Entropies of Fusion and Melting Points of Organic Chemicals. 
Molecular Informatics, 2019. 38(8-9): p. e1800160. 

2.8. Availability of information about the model 

The model is non-proprietary: training and external validation datasets are available in the 
publication supplemental information. The model is also available for use on the online 
platform EAS-E Suite: https://arnotresearch.com/eas-e-suite/. 

2.9. Availability of another QMRF for exactly the same model  

NA 
 

3. Defining the endpoint - OECD Principle 1: “A DEFINED ENDPOINT" 

3.1. Species 

Human 

3.2. Endpoint 



Whole body biotransformation half-life (HHLB) 

3.3 Comment on endpoint 

Details regarding the gender, age, body composition, etc. are variable or unavailable for the 
whole-body total elimination half-life data (HHLT). The (HHLB) values are back-calculated from 
HHLT using a one-compartment pharmacokinetic (1-CoPK) model. The 1-CoPK model 
calculations are done for a reference 70 kg human.  

3.4. Endpoint units 

Hours 

3.5. Dependent variable 

log10 HHLB 

3.6. Experimental protocol 

NA 

3.7. Endpoint data quality and variability 

The data HHLT were collected from aggregated sources such as online databases and review 
papers, and from the primary literature, as referenced in [1]. Because the data is collected 
from diverse sources the data quality is likely to be variable. Some additional uncertainty and 
variability will have been introduced by the 1-CoPK back-calculations. 

 

4. Defining the algorithm - OECD Principle 2: “AN UNAMBIGUOUS ALGORITHM” 

4.1. Type of model 

QSAR – multiple linear regression, ordinary least squares 

4.2. Explicit algorithm 

The predictions are calculated as the linear sum of fragment counts (f) and regression 
coefficients (a). 

log10 HHLB = a0 + a1f1 + a2f2 + ... + anfn 

4.3. Descriptors in the model 

The descriptors are all molecular fragments specified as SMARTS strings. The inputs used in 
the algorithm shown in 4.2 are the counts of each fragment in a chemical structure. There are 
62 fragments plus the intercept (a0) in the model. 

4.4. Descriptor selection 

The preliminary descriptor pool is generated using custom code by recursively fragmenting the 
training dataset to obtain all possible molecular fragments, which typically number in the tens 
of thousands, a ratio of up to 100:1 vs. the number of training data. After consolidating 
fragment with colinear counts and applying other filters such as a cut off for correlation vs. the 
dependent variable the number of fragments in final descriptor pool is typically at a ratio of 
about 10:1 vs. the number of training data points. 



4.5. Algorithm and descriptor generation 

Fragments are selected from several sub-pools of descriptors proceeding iteratively from 
simple fragments to complex fragments. Fragments in each sub-pool are selected by iterative 
forward selection and backwards removal, with replacement of fragments in the model with 
fragments from the sub-pool also considered in the forward selection. Fragment selection and 
removal are chosen by selecting or removing the fragment which improves the goodness-of-fit 
(GoF) the most. GoF is the Akaike Information Criteria Corrected for dataset size (AICC), which 
uses as input the predictive sum of squares (PRESS) calculated from a k-fold cross validation 
(typically k = 10). 

4.6. Software name and version for descriptor generation 

IFSQSAR custom development code, see 4.4 and 4.5. 

4.7. Chemicals/Descriptors ratio 

Ratio of training data to selected descriptors is 470:62, or approximately 8:1. 
 

5. Defining the applicability domain - OECD Principle 3: “A DEFINED DOMAIN OF 
APPLICABILITY” 

5.1. Description of the applicability domain of the model 

Three methods of assessing Applicability Domain (AD) are applied simultaneously in IFSQSAR: 

1. The leverage approach [2] which is essentially a metric that quantifies the distance in 
the model descriptor space between a chemical the training data. 

2. Chemical similarity score (CSS) [3] which is an k-nearest neighbours approach (k=5) 
that also incorporates how well the model fits the training data of the nearest 
neighbours. 

3. Other structural or property alerts [4]: 
a. None of the fragments in the model are in the chemical and the prediction is 

just the intercept. 
b. A check for atom or bond types not found in the training dataset. 
c. Boundary condition violations, i.e. for HHLB a minimum possible half-life is 

defined because the biotransformation of chemicals in the human body is 
limited by physiological parameters. 

The first two methods are applied in a complementary way to define chemicals as in AD, 
borderline cases which are in AD but have more uncertainty, out of AD, and cases of egregious 
extrapolation which are very uncertain. These designations are overridden by alerts of the third 
method which identify very uncertain predictions. 

The uncertainty of predictions is quantified as a 95% confidence factor (Cf). For example, Cf=2 
means that the prediction is estimated to be within a factor 2 of the real value, at a confidence 
level of 95%. The uncertainty is estimated by evaluating the accuracy of predictions for 
chemicals in the external validation dataset. 

5.2. Method used to assess the applicability domain 



It is observed for this model and others that the uncertainty as quantified using the external 
validation dataset increases proceeding from: in AD, borderline, out AD, egregious 
extrapolation, missing atoms or bonds. This pattern of increasing validated uncertainty with 
increasingly dire AD warnings builds confidence that the AD methods are effective and robust. 

5.3. Software name and version for applicability domain assessment 

IFSQSAR custom code, see 5.1. 

5.4. Limits of applicability 

Boundaries for the leverage approach, where p' is the number of model parameters including 
the intercept, and n is the number of training data: 

• Borderline: leverage > 0.201, defined as 1.5∙p'/n 
• Out of AD: leverage > 0.402 defined as 3∙p'/n 
• Egregious extrapolation: leverage > 1 

Boundaries of the CSS approach where CSS is in the range 0 (no similarity) to 1 (very similar): 

• Out of AD: CSS < 0.240, defined as lower CSS than 95% of the training data. 
• Borderline: CSS < 0.378, defined as lower CSS than 75% of the training data. 

A chemical is assigned in AD, borderline, out of AD, or egregious extrapolation based on the 
most conservative (poorest) result from the leverage and CSS approaches, so a chemical is 
only assigned in AD if both approaches assign a chemical as in AD. 

Out of AD due to no fragment overlap: counts for all fragments in the model are zero. 

Out of AD due to novel bonds or atoms: at least one bond or atom type not found in the training 
dataset. 

Out of AD due to lower boundary violation: predicted HHLB less than 0.05 hours. 
 

6. Defining goodness-of-fit and robustness (internal validation) – OECD Principle 4: 
“APPROPRIATE MEASURES OF GOODNESS-OF-FIT, ROBUSTENESS AND PREDICTIVITY” 

6.1. Availability of the training set 

The data come from publicly available sources and are summarized in the supplemental 
information of the paper [1]. Data are also available in the database of the online platform EAS-
E Suite: https://arnotresearch.com/eas-e-suite/. 

6.2. Available information for the training set 

a) Chemical names: Yes 

b) CAS numbers: No 

c) SMILES: No 

d) InChI codes: No 

e) MOL files: No 



f) Structural formula: No 

g) Nanomaterials: No 

h) test chemical purity: No 

i) Any other structural information: No 

6.3. Data for each descriptor variable for the training set 

No, descriptor values are not included. 

6.4. Data for the dependent variable for the training set 

Yes, dependent variable values are included in the supplemental information of the paper [1]. 

6.5. Other information about the training set 

The training dataset contains n=470 chemicals with log10 HHLB in the range -1.3 to 6.3. 

6.6. Pre-processing of data before modelling 

HHLB data were pre-processed from three sources. First, a dataset of HHLBs for 
polychlorinated biphenyls (PCBs) from the literature was used unmodified. Next, in cases 
where an empirical urinary elimination rate was available this was used to transform HHLT to 
HHLB assuming that other elimination rates were negligible. Finally, the 1-CoPK model was 
used to back-calculate HHLB from HHLT values. An uncertainty analysis was performed on the 
last dataset and model results which were subject to too much uncertainty were removed from 
the dataset. A 1-CoPK based on DOW was used rather than one based on KOW because it had a 
better goodness-of-fit for the available empirical data. The data was transformed from HHLB to 
log10 HHLB. 

6.7. Statistics for goodness-of-fit 

r2 = 0.888, RMSE = 0.465 

slope= 0.882, intercept = 0.155 for correlation between fitted and expected log10 HHLB values. 

6.8. Robustness - Statistics obtained by leave-one-out cross-validation 

NA 

6.9. Robustness - Statistics obtained by leave-many-out cross-validation 

NA 

6.10. Robustness - Statistics obtained by Y-scrambling 

Not performed for this QSAR, but y-scrambling was done with 50 iterations while developing 
the algorithm and it was found that the average y-scrambled r2 and RMSE were 0.086 and 1.10 
compared to fitted values of 0.789 and 0.526 [3]. 

6.11. Robustness - Statistics obtained by bootstrap 

NA 

6.12. Robustness - Statistics obtained by other methods 



AICC = -571.6 
 

7. Defining predictivity (external validation) – OECD Principle 4: “APPROPRIATE MEASURES 
OF GOODNESS-OF-FIT, ROBUSTENESS AND PREDICTIVITY” 

7.1. Availability of the external validation set 

The data come from publicly available sources and are summarized in the supplemental 
information of the paper [1]. Data are also available in the database of the online platform EAS-
E Suite: https://arnotresearch.com/eas-e-suite/ 

7.2. Available information for the external validation set 

a) Chemical names: Yes 

b) CAS numbers: No 

c) SMILES: No 

d) InChI codes: No 

e) MOL files: No 

f) Structural formula: No 

g) Nanomaterials: No 

h) test chemical purity: No 

i) Any other structural information: No 

7.3. Data for each descriptor variable for the external validation set 

No, descriptor values are not included. 

7.4. Data for the dependent variable for the external validation set 

Yes, dependent variable values are included in the supplemental information of the paper [1]. 

7.5. Other information about the external validation set 

The external validation dataset contains n=470 chemicals with log10 HHLB in the range -1.1 to 
5.7. 

7.6. Experimental design of test set 

The training data is initially seeded with the chemicals that have the highest and lowest 
expected values. Chemicals are then alternately added to the training and validation datasets 
until all chemicals are assigned to a dataset. When adding to the training dataset the chemical 
which is the least similar to chemicals already in the training dataset and most similar to 
chemicals already in the external validation dataset is selected. When adding to the external 
validation dataset the chemical which is the least similar to chemicals already in the external 
validation dataset and most similar to chemicals already in the training dataset is selected. 
More details about quantifying the similarity are available in [2], but the method is similar to 
the definition of CSS, see 5.1. 



7.7. Predictivity - Statistics obtained by external validation 

r2 = 0.725, RMSE = 0.746 

slope= 0.830, intercept = 0.243 for correlation between fitted and expected log10 HHLB values. 

7.8. Predictivity - Assessment of the external validation set 

The external validation dataset comprises 50% of the available data, and the methodology to 
assign chemicals to the training and external validation datasets ensures representative 
dependent variable and fragment count distributions in both datasets.  

7.9. Comments on the external validation of the model 

Comments on the external validation of the model: Add any other useful comments about the 
external validation procedure. 

 

8. Providing a mechanistic interpretation - OECD Principle 5: “A MECHANISTIC 
INTERPRETATION, IF POSSIBLE” 

8.1. Mechanistic basis of the model 

The descriptors are all fragments (sub-structures) of the chemicals in the training dataset and 
therefore depending on the sign of their regression coefficients are interpretable. Fragment 
interpretation was done in the paper [1] for both HHLT and HHLB because the values are 
correlated, and the models contain similar fragments. Fragments can make chemicals more 
susceptible to whole body elimination (negative regression coefficients, lower HHLT and 
HHLB) or less susceptible to whole body elimination (positive regression coefficients, higher 
HHLT and HHLB). General observations from the paper [1] are that non-polar functional groups 
such as halogens, aromatic and olefinic structures increase HHLT and HHLB, while polar 
heteroatom functional groups tend to decrease the HHLT and HHLB. 

8.2. A priori or a posteriori mechanistic interpretation 

A posteriori. 

8.3. Other information about the mechanistic interpretation 

NA 
 

9. Miscellaneous information 
9.1. Comments 

The inclusion in the model outputs of a quantitative uncertainty metric is useful for assessing 
the reliability of the predictions and for propagating uncertainty in applications of the QSAR 
predictions. 

9.2. Bibliography 

NA 

9.3 Supporting information 



NA 


