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Executive Summary 

 
Extensive research has been conducted towards understanding and estimating 

biodegradation processes, yet for the vast majority of chemicals in commerce 
environmentally relevant biodegradation half-life values remain uncertain and difficult to 
access or estimate. The uncertainty in these rates is partially attributable to the observed 
natural variability resulting from different environmental conditions such as temperature, 
bioavailability and the genetic competence of microbial communities that may or may not 
be present. It is important to maximize the accuracy of chemical biodegradation rate data 
in the environment to minimize uncertainty associated with hazard and risk assessments. 
In this report a practical method for estimating biodegradation rates is described. It 
utilizes the inherent knowledge of the BIOWIN suite of biodegradation models. The 
models are calibrated to empirical aerobic environmental half-life data from 40 selected 
“training set” chemicals. The outcome of this calibration is compared to 115 “evaluation 
set” chemicals of environmental aerobic biodegradation. The calibrated BIOWIN 
estimation method is further compared with empirical half-life data and illustrative 
estimates from another biodegradation model (CATABOL). This evaluation reveals that 
the average absolute error is 116 and 2537 for the proposed method and CATABOL, 
respectively. The root mean square error is 279 and 5119 for the proposed method and 
CATABOL, respectively. This evaluation is not intended to be a direct model comparison 
since the revised BIOWIN predictions are a result of calibration to a subset of the 
evaluation set, whereas CATABOL is not. The potential application of the modified 
BIOWIN estimation method to a large number of chemical substances is investigated. A 
companion and more speculative method suggested in this report incorporates a “slide 
rule” approach for assessing all available empirical and estimated data for the 
biotransformation rate of a chemical. 
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Introduction 

Chemicals in the environment are subject to processes such as transport (e.g., 
advection in a river), multimedia partitioning (e.g., air-water) and reaction (e.g., photolysis, 
hydrolysis and biodegradation). Chemical and biological reactions, or transformations, are 
the only mechanisms that alter and ultimately remove a chemical from the global 
environment. Biodegradation is the transformation of a chemical as a result of a living 
organism. All organisms including microorganisms, plants, insects and animals perform 
enzymatic chemical transformations. Generally, higher order organisms transform 
chemicals so that they can be more readily eliminated, whereas simpler organisms such as 
bacteria and fungi are responsible for most of the extensive biodegradation in the 
environment. Primary biodegradation changes the identity of the parent chemical as a first 
step to more extensive mineralisation, whereas ultimate biodegradation results in the 
complete mineralisation of the chemical to water, carbon dioxide and inorganic compounds 
[1]. Biodegradation is arguably one of the most important processes influencing the amount 
and persistence of chemical in the environment [2] but unfortunately the rates of these 
processes are poorly understood. 

 
Multimedia models are used to provide quantitative understandings of the 

environmental fate of chemicals and to assess potential risks to ecosystems and humans. 
Accurate media specific half-lives are essential for the reliable assessment of chemicals. 
Assuming first order kinetics the half-life t1/2 can be derived from a rate constant k as 0.693 
/ k. Fairly reliable methods are available for estimating the chemical half-life due to abiotic 
processes (e.g., [3]) but environmentally relevant biodegradation half-life information 
remains a major source of uncertainty [4]. Hazard assessment requires persistence data, 
which are dependent on the half-lives. Emissions and persistence control the mass and 
concentration of a chemical in the environment and hence the ultimate exposure and 
potential risk of a chemical. There is a need to improve existing methods of estimating 
environmental primary biodegradation half-lives to provide greater confidence in chemical 
assessments.  

 
The objective of this report is to describe and evaluate pragmatic methods for 

estimating environmentally relevant aerobic primary biodegradation half-lives as required 
for multimedia fate models. Two relatively simple and robust methods are described and 
evaluated. In the first method the inherent knowledge from four BIOWIN models is 
“calibrated” to empirical field-based half-life data. The ensuing predictions are then 
evaluated with empirical data and an example of other estimation methods (i.e.,  
CATABOL). The potential for applying this method to a large number of chemicals, i.e., 
10,600 organic chemicals, is investigated. The second, and more speculative, companion 
method describes a “slide-rule” approach that can be used to combine biotransformation 
information from all estimation sources and thus assess a substance’s inherent susceptibility 
to degradation in a more pictorial manner. 

Sources of biodegradation data 

Current sources of empirical biodegradation information include laboratory tests, 
field data, environmental handbooks and other databases. Standardized laboratory tests are 
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used to obtain empirical estimates of a chemical’s biodegradation potential. These include a 
suite of guideline tests recommended by the Organization for Economic Cooperation and 
Development (OECD). These tests are considered as standards for estimating the “ready” 
or “nonready” biodegradability of a substance. The protocols are not designed to provide an 
estimated rate for primary chemical transformation and the conditions employed are not 
relevant to environmental conditions. Extrapolation methods from laboratory tests have 
been suggested but these have been met with mixed reviews [5, 6]. Field studies (e.g., grab 
samples, river die-away) have been conducted for a few chemicals but such data are non-
existent for most chemicals. Environmental handbooks (e.g, [7, 8]) provide collections of 
empirical data and can also provide guidelines for overall media specific half-lives. These 
sources provide compiled data and expert judgment, however they are generally limited in 
the scope of information they can offer for the vast number of chemicals used in commerce. 
Qualitative information is available for many biodegradation pathways most notably the 
University of Minnesota Biocatalysis/Biodegradation Database [2] and a Biodegradability 
Evaluation and Simulation System (BESS). Two other major sources of empirical 
information are the Syracuse Research Corporation’s BIODEG database, which contains 
over 5,800 records of experimental results on biodegradation studies for approximately 800 
chemicals and the Japanese Ministry of International Trade and Industry (MITI) database. 
Most of these data are derived from laboratory studies. These databases have been used in 
model development but these models are not considered to be directly applicable for 
estimating environmentally relevant biodegradation rates for a large number of chemicals. 
 

A variety of models has been developed to predict biodegradation. These include 
structure-biodegradability relationships (SBRs) and quantitative structure-biodegradability 
relationships (QSBRs). SBRs provide qualitative endpoints such as passing or failing a 
ready biodegradation test while QSBRs provide an estimation of rate or half-life. Examples 
of such models include BESS, BIOWIN, CATABOL, TOPKAT, and Multicase. Howard 
[1] and Jaworska et al [9] provide reviews for many of the different estimation methods 
currently available. These models are continually being refined and improved. 
 

The Biodegradation Probability Program (BIOWIN) estimates the probability for 
the rapid biodegradation of an organic chemical in the presence of mixed populations of 
environmental microorganisms [10-14]. BIOWIN was developed by the Syracuse Research 
Corporation (SRC) and the US EPA as part of the EPIWIN/EPISUITE™ model package 
and is freely available from the US EPA website [15]. BIOWIN includes six different 
models including: (1) linear probability BIODEG, (2) nonlinear probability BIODEG, (3) 
expert survey ultimate biodegradation model (USM), (4) expert survey primary 
biodegradation model (PSM), (5) Japanese MITI linear, and (6) Japanese MITI nonlinear. 
These are generally referred to as BIOWIN1_6. Estimates are based on fragment constants 
and molecular weight and require only a chemical structure. These models have been 
developed and tested for a range of chemical substances for assessing the biodegradation 
potential of chemicals by regulatory agencies.  

 
The BIOWIN models have been developed to screen and classify chemical 

biodegradability (i.e., ready and nonready). The expert survey models (BIOWIN3_4) 
provide estimates for the time required to achieve primary and ultimate aerobic 
biodegradation in water. Boethling et al have provided recommendations for converting this 
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information to environmental half-lives, however they suggest that these estimates not be 
used as inputs for multimedia modelling assessments [16]. The BIOWIN models include 
significant inherent information on the relative biodegradability of chemicals derived from 
different sources (i.e., SRC and MITI empirical data sets and expert judgment). If this 
knowledge could be adapted to empirical and estimated field based measures of primary 
biodegradation half-lives then perhaps the utility of the BIOWIN models could be 
extended. 

 

Methods 

Environmental aerobic biodegradation half-life estimation 

In an attempt to develop a pragmatic method of selecting biodegradation half-lives 
for regulatory assessment purposes, a total of 40 chemicals were selected as a “training set” 
for the calibration of BIOWIN models 1, 3, 4, 5 (i.e., linear BIODEG, USM, PSM and 
linear MITI) to reliable assessments of aerobic biodegradation environmental half-lives. 
The 40 chemicals were selected based on the availability of reliable measurements (i.e., 
sample size). Chemical and structural diversity were included to the greatest extent 
possible. Data were compiled from handbooks [7, 8], the Syracuse Research Corporation 
BIODEG database and the primary literature. Primary research sources were obtained and 
the data evaluated for quality. The selected empirical data were largely aqueous aerobic 
half-lives although some values were estimated from soil based studies (i.e., [7]). These 
half-life values for soil were included if it was observed that they were in the range of 
aqueous data. Only those half-lives interpreted as being primary biodegradation rates were 
considered. Table 1 provides a list of the 40 chemical “training set” and summary statistics 
of the empirical environmental half-lives. Figure 1 illustrates the log normal distribution of 
half-lives considered for the calibration. Appendix 1 includes further information on the 
physical-chemical properties and illustrates the range of chemical structures included in this 
compilation. 
 

Raw numerical output from each of the four BIOWIN models was generated for the 
40 chemicals. The raw output for each model was then calibrated by linear regression to the 
corresponding arithmetic means from the empirical biodegradation half-lives. The 
arithmetic mean was selected as a metric for calibration rather than the geometric mean 
because there are generally few observations for each chemical with many exhibiting a 
wide range in half-lives. Given the uncertainty in measurement and the variability 
associated with environmental half-lives it was decided to calibrate to a higher average to 
provide a modest degree of conservatism. 

 
If a value for biodegradation was reported as the %BOD (Biochemical Oxygen 

Demand) or as the percentage of chemical degraded then this information was converted to 
a half-life estimate. Assuming first order decay from an initial quantity C0 to C in time t 
gives: 

 
C = C0 exp(−kt)  (1) 
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where k is a rate constant. The percent loss or BOD is then 
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The half-life t1/2 is then 0.693 / k or  
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This approach assumes first order decay and it does not allow for an initiation period during 
which the microbial community becomes activated or acclimated. 
 

The regressions for each model (see Table 2 and Figure 2) were then used to 
calculate estimations of biodegradation half-lives from numerical model output for each 
chemical. For example, for benzene (CAS# 71-43-2) the numerical output from the primary 
survey model is 3.39, which is calculated to a log10 biodegradation estimate of 1.56 days or 
a value of 36 days. The estimated half-life values obtained from each of the four models 
was combined and compared in a series of model evaluations.  

Environmental biodegradation half-life estimation evaluation 

The extrapolation of environmental biodegradation half-lives from BIOWIN model 
output was evaluated in three different ways. First, the averaged estimates of the four 
models were compared to an “evaluation set” of 115 chemicals for which empirical data 
were available. This included the 40 chemicals used in the “training set” regressions. A list 
of the additional 75 chemicals including summary statistics is provided in the Appendix. 
Second, the models were compared as a total group (i.e., averaged values for all four 
models) as well as in “round robin” combinations to determine if a particular combination 
could produce more reliable results. Third, the extrapolated BIOWIN estimated half-lives 
and CATABOL estimated half-life values were compared to empirical data. CATABOL 
provides estimates of %BOD for a 28-day period. These values were converted to half-life 
estimates using equation 4. 

General assessment of BIOWIN model output 

The four selected BIOWIN models were run in “batch mode” for approximately 
10,600 diverse organic chemicals on Canada’s Domestic Substances List (DSL). The DSL 
includes a large number of chemical classes and encompasses a wide range of physical 
chemical properties. The raw numerical output from the four models was evaluated. 
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Statistical analyses 

Statistical analyses were conducted using Microsoft EXCEL™ and JMPIN™ (SAS 
institute). 
 

Results and Discussion 

Environmental aerobic biodegradation half-life estimation 

The series of plots in Figure 2 illustrates the calibration of BIOWIN model output to 
40 selected “training set” chemicals. The empirical half-lives are the arithmetic mean for 
each chemical and are plotted on a logarithmic scale. These calibrations indicate a good 
correlation between the empirical data and the model predictions. For these 40 chemicals 
the relationship is strongest for the survey models followed by the linear BIODEG model 
and the linear MITI model. Table 2 summarizes the resulting equations and statistics for 
each regression. Restrictions were applied to low values of model output. For example, if 
PSM output was less than 2 the chemical was considered to have a maximum half-life of 
3650 days (10 years). Likewise, a USM output less than 0.85 corresponds to a maximum 
half-life of 2190 days (6 years), linear BIODEG output less than -0.95 corresponds to 3300 
days (~9 years) and linear MITI output less than -0.7 corresponds to 3650 days (10 years). 
The purpose of this calibration is to provide a means to estimate “real world” 
biodegradation half-lives for application in multimedia fate models. The aim is not provide 
accurate biodegradation rates for extremely recalcitrant chemicals. For the purposes of 
multimedia fate modelling there is a point at which low biodegradation rates become 
relatively less important in comparison to other processes such as advective losses. 

 
These equations provide an estimate of aerobic environmental half-life (i.e., y) from 

the output of each BIOWIN model (i.e., x). The regression equations provide the log10 
biodegradation environmental half-lives. The estimated environmental biodegradation half-
lives were averaged in an effort to obtain “balance” between model errors. The models 
could be used to produce either an arithmetic mean or a geometric mean. The coefficient of 
variation could be used to identify the relative agreement or disagreement between the four 
models. Professional judgment could also be used to remove a particular model prediction 
that does not follow a pattern identified by the other models (i.e., an extreme value). 

Estimation method evaluation 

The estimated environmental half-lives were evaluated in comparison to empirical 
data and to other model estimates. Figure 3 illustrates the log-normal distribution of 
empirical half-life values from the “evaluation set” of 115 chemicals. This indicates that a 
wide range of empirical half-life information was included for the evaluation. Figure 4 
compares aerobic biodegradation half-lives using the arithmetic mean from half-life 
estimates from all four models with empirical data for 115 chemicals. Using this approach 
98% and 77% of the 115 chemicals are predicted within a factor of 10 and a factor of 3 of 
the empirical data, respectively. Those values that lie outside a factor of 10 are all 
conservative model predictions. For screening level assessments conservative errors are 
preferable. 
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An effort was made to compare the different possible model calibration 

combinations that may result in significantly better relationships with the empirical data 
against which they are tested. For example, the calibration of the linear MITI model 
appears to be the weakest of the 4 models. Table 3 provides results from the “round robin”. 
It appears that averaging the information from all four models provides the most reliable 
predictions. 
 

Figure 5 compares estimated environmental biodegradation half-lives derived in this 
study (n = 116) with half-lives estimated using CATABOL (n = 112) and geometric means 
of available empirical data (n = 116). The empirical data include the upper and lower 95% 
confidence limits. The CASRN and chemical names reported in Figure 5 are tabulated in 
the Appendix. It is observed that the revised BIOWIN estimated values are within the 95% 
confidence limits of the empirical values for all but 17 of the chemicals. Modified BIOWIN 
estimated values are not always in agreement with the CATABOL predictions. In general 
the CATABOL predicted half-life values are greater than those estimated by this method, 
particularly for more “persistent” chemicals. CATABOL half-life predictions are also 
usually greater than empirical data. 

 
There are 112 chemicals for which estimated values are available for both 

CATABOL and BIOWIN and for which reliable empirical data are available. Comparisons 
of both estimation methods to empirical data reveals that average absolute errors (AAE) 
and root mean square errors (RMSE) are 116 d and 279 d for the proposed method and 
2537 d and 5119 d for CATABOL, respectively.  It is important to realize that this 
evaluation is not intended to be a direct model performance comparison since the revised 
BIOWIN predictions are a result of calibration to a subset of the evaluation data set the 
derived CATABOL predictions are not a result of calibration to a subset of the evaluation 
data set. CATABOL (v5.0763) estimates were provided by Environment Canada and are 
included only as a general comparison in the absence of other available biodegradation  
predictions for the “evaluation” data set. 

 
It is concluded that the preferred method is to run all four models (BIOWIN 1, 3, 4, 

and 5) and average extrapolated environmental estimates as the biodegradation rate in 
water. It is also useful to run CATABOL for comparison purposes. 

General assessment of BIOWIN model output 

Figure 6 compares numerical model output from BIODEG (B1), USM (B3) and 
MITI (B5) against PSM (B4) for 10,600 DSL chemicals. This evaluation shows that the 
slopes of the regressions are near unity for the BIODEG and MITI models against PSM. 
The slope is greater than one when comparing USM to PSM. This is encouraging in that the 
scoring for the ultimate biodegradation model is lower than the scoring for the primary 
model for the same chemical. Likewise, these two models also show the greatest agreement 
with the highest correlation coefficients. This analysis suggests that for a large number and 
diverse set of chemicals that the models are generally in strong qualitative agreement and in 
good quantitative agreement with one another. This agreement varies between models. 
There are obvious cases in which the models do not agree well and these chemicals could 
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be investigated to have a better understanding as to why these differences exist and how 
such differences can be corrected or minimized. More importantly, addressing these 
differences may identify aspects of the models that could be improved. 
 

Residuals from the model correlations tend to increase for predictions of “more 
persistent” chemicals, i.e., longer half-lives. One explanation for this is that the survey 
models are “more accurate” for relatively more biodegradable chemicals compared to less 
biodegradable chemicals as a result of their design. For example, the survey asked experts 
to assign a value of 5, 4, 3, 2, or 1 corresponding to general time categories of either 
primary or ultimate aerobic biodegradation in the environment. These categories are 
“hours”, “days”, “weeks”, “months” or “longer”. Provided with this scale for classification 
an expert would likely interpret “hours” as less than or equal to approximately 1 day, 
whereas months would perhaps have been interpreted as 60 to 365 days. It is difficult to 
quantify the “longer” category. Clearly, the associated errors and uncertainties in assigning 
a number to these qualitative descriptors will increase with increasing temporal scale. This 
is unfortunate because a major regulatory effort is to identify, evaluate and possibly 
regulate persistent chemicals in the environment. Although this expert knowledge is 
difficult to obtain and is subjective, a more quantitatively explicit survey in the future could 
result in reduced uncertainty for developing environmental half-life models for both 
primary and ultimate biodegradation. 

 
Figure 7 illustrates the distributions of model output from the four BIOWIN models 

for 10,600 substances. This evaluation provides a reasonable assessment for the range of 
possible model outputs that can be expected for organic chemicals. These distributions 
suggest that the “extreme” model predictions are generally observed for “more persistent” 
chemicals. Figure 8 indicates that extreme model output is largely associated with 
increasing molecular weight. This can be interpreted as a “residual effect” of the 
contribution method for larger chemicals. It may also reflect the lower solubility in water 
and hence availability of these substances. This has also been observed for physical-
chemical property estimations when applying EPIWIN and other contribution models to 
high molecular weight chemicals. This preliminary analysis identifies extreme BIOWIN 
model outputs and suggests careful analysis of the results for chemicals with molecular 
weight greater than approximately 500. This information also suggests that there are 
possible limiting values for each model that should be restricted.  

A speculation on methods of improving the selection of biodegradation data 

The objective of this section is to speculate on methods that may be developed in 
the future and to display empirical and estimate biodegradation rate data leading to an 
optimal selection of half-lives for various environmental compartments. 

 
First it is useful to set an ultimate target in terms of accuracy for these estimates. 

Rather than give actual numerical estimates of half-lives, e.g., 100 hours, it is probably 
more honest to assign a chemical to a “bin” or half-life range of say 50 to 200 hours. The 
“width” of these bins can be varied according to the perceived accuracy. Mackay et al [8] 
have suggested that these bins could be “semi-decade” wide, i.e., factor of approximately 3 
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from low to high end. For abiotic reactions such as atmospheric oxidation and hydrolysis 
this is certainly achievable, but it is currently optimistic for biodegradation kinetics. 

 
The semi-decade or factor of 3 level of discrimination is a compromise between 

conveying an exaggerated impression of accuracy (as would be implied by a factor of 2 
range) and a rather pessimistic use of factor of 10 ranges. In many cases the rates are 
known with error limits of factor of 2 or 3. Half-life data can be obtained from field tests, 
STP treatability, QSARs and expert judgment. Obviously the results from each source will 
differ, for example the following is a hypothetical list. 

 
 

Source Half-life (hours) 
Metabolism in rat 20 
Sewage treatment plant (STP) 40 
BOD test 100 
Water test (e.g., river die away) 300 
Soil test 600 
Sediment test or expert judgment 1000 
QSAR1 200 
QSAR2 500 
QSAR3 120 

 
 
These different quantities represent different “currencies” but they all refer to 

biodegradation phenomena, albeit in different environments at different conditions and 
probably with different microbial systems. If a large database can be compiled it may be 
possible to develop relationships between, for example, typical STP half-lives and water or 
soil half-lives. A difficulty is that x, y correlations can only be done on two quantities at a 
time. It would be useful if a correlation or multiple regression approach could be devised in 
which all the data are treated simultaneously. It is suggested that this can be done using a 
“slide rule” approach in which the logarithmic half-life scales are displaced by an amount 
corresponding to the slope of the x, y plot on a logarithmic basis. The slope is essentially a 
factor. 

 
It is useful to review briefly the principle of the slide rule. Regrettably, slide rules, 

which were once standard equipment for the engineer, are now virtually obsolete. Two 
logarithmic scales can be slid past each other or displaced to a desired extent. To multiply 2 
by 3 the point 1.0 on the mobile slide is set at 2.0 on the stationary scale and the answer 
(6.0) is read off on the slide opposite 3.0 on the slide, Effectively log 2 is added to log 3 to 
give log 6. 
 

In this case each biodegradation data source is an individual slide rule marked in 
classes as shown in Figure 9. The relative data source to data source adjustment is obtained 
by correlation of log half-life versus log half-life (t) forcing a parameter correlation of the 
type 
 
log t1 = A + log t2   (5) 
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This is equivalent to 
 
t1 = 10A t2   (6) 
 

An even simpler correlation is to force A to adopt one of several positive or 
negative values such as 0.5, 1.0, 2.0, -0.5, -1.5 etc. where n is a positive or negative integer. 
This essentially relates the half-life ranges to each other rather than the numerical values. 
The factors 10A then adopt values such as 3.1, 10, 31, 0.31, and 0.1 i.e., 100.5n where n in 
these examples is 1, 2, 3, -1, and -2. 
 

Figure 9 gives a fictitious result for a "persistent" and a "non-persistent" substance 
in which the correlations have been fairly successful and take the form of displacement by 
the specified number of ranges. It is not expected that it will be possible to align all the 
ranges for all substances but the diagram has the potential to convey an impression of 
persistence, to assess the consistency between data inputs (or more strictly test if they fit the 
correlation implied by the specified displacement) and in the absence of any experimental 
data they enable QSAR data to be used to estimate the ranges in which other half-lives are 
likely to lie. Using ranges avoids conveying an impression of excessive accuracy. The user 
is at liberty to select single numerical half-lives from the range, but that selection is clearly 
the responsibility of the user. 

 
In order to construct the slide rule a quantity of reliable biodegradation data should 

be gathered and correlations sought between the various sources. Pairs of sources are 
compared and mean factors relating the half-lives are established. For example, soil half-
life is 3 times the water half-life value on average. Some of these factors are subject to 
varying accuracy. From the matrix of pairs of factors a single set is established and used to 
set the slide rules. If the factors apply to a specific chemical, the classes will be aligned 
horizontally, but it is expected that there will be deviations. If the method has validity the 
data should lied generally on a horizontal band, the location of which indicates the 
biodegradability. This has the advantage that the output is pictorial rather than numerical 
and the results may be more readily understood. 

 
Inherent in this approach is the assumption that the biodegradation process is 

fundamentally second order in nature, specifically first order with respect to the chemical 
and first order with respect to the microbial community that prevails in that compartment. 

 
It is recommended that this approach be explored by applying it to a set of 

biodegradation data for chemicals in a variety of media. The usefulness of the method can 
only be evaluated in the light of experience. 

 



 11

Conclusions 

From this analysis it is suggested that for DSL chemicals the most reliable and 
robust approach is to  

 
(1) Gather all available empirical data for the substance of interest in all relevant 

media. 
(2) Run the four BIOWIN models (1, 3, 4, and 5) and the CATABOL model, 

average the BIOWIN half-lives and check that the results are generally 
consistent with the CATABOL results. 

(3) The empirical and model data are then combined using expert judgment to 
suggest a range of half-lives which may be applicable to that substance. 

(4) Apply factors to relate water, soil, and sediment half-lives and possibly STP 
half-lives. This can be done directly or using the slide rule pictorial approach. 

 
It is recommended that the feasibility and usefulness of the slide rule approach be evaluated 
in a companion study. 
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 Table 1. A list and statistical summary of empirical aerobic environmental half-lives 
for 40 chemicals selected as a “training set” to calibrate the BIOWIN models. 

   Empirical t1/2 (d)   log 

CAS Chemical Name n Arithmetic mean STDEV CV Mean 

71-43-2 Benzene 8 40 46 1.15 1.60 

84-66-2 Diethylphthalate (DEP) 7 11 20 1.86 1.03 

87-86-5 Pentachlorophenol 7 146 183 1.25 2.16 

93-76-5 2,4,5-trichlorophenoxyacetic acid 7 25 18 0.73 1.40 

108-95-2 Phenol 6 5 4 0.83 0.70 

1912-24-9 Atrazine 7 96 71 0.74 1.98 

85-68-7 Butyl benzyl phthalate (BBP) 6 4 4 0.85 0.64 

100-41-4 Ethylbenzene 6 14 13 0.92 1.15 

106-44-5 p-cresol 5 1 1 0.95 0.10 

58-89-9 γ-HCH (lindane) 5 392 299 0.76 2.59 

63-25-2 Carbaryl 5 14 12 0.86 1.14 

76-44-8 Heptachlor 5 824 1074 1.30 2.92 

91-20-3 Naphthalene 5 40 17 0.42 1.60 

91-22-5 Quinoline 4 14 18 1.30 1.14 

95-95-4 2,4,5-trichlorophenol 4 366 360 0.98 2.56 

116-06-3 Aldicarb 5 131 165 1.26 2.12 

118-74-1 Hexachlorobenzene 5 1245 850 0.68 3.10 

122-34-9 Simazine 5 81 52 0.64 1.91 

131-11-3 Dimethylphthalate (DMP) 5 3 3 1.04 0.40 

1563-66-2 Carbofuran 5 40 26 0.65 1.60 

1746-01-6 2,3,7,8-TCDD 5 648 247 0.38 2.81 

1918-00-9 Dicamba 5 69 66 0.96 1.84 
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   Empirical t1/2 (d)   log 

CAS Chemical Name n Arithmetic mean STDEV CV Mean 

50-32-8 Benzo[a]pyrene 4 284 201 0.71 2.45 

56-55-3 Benz[a]anthracene 4 301 261 0.87 2.48 

72-43-5 Methoxychlor 4 191 147 0.77 2.28 

75-01-4 Chloroethene (vinyl chloride) 4 76 75 0.98 1.88 

108-60-1 Bis(2-chloroisopropyl)ether 4 66 80 1.21 1.82 

108-88-3 Toluene 4 18 16 0.89 1.26 

120-82-1 1,2,4-trichlorobenzene 4 61 79 1.30 1.79 

121-14-2 2,4-dinitrotoluene 2 104 107 1.03 2.02 

206-44-0 Fluoranthene 4 306 132 0.43 2.49 

7085-19-0 Mecoprop 4 25 24 1.00 1.39 

64-17-5 Ethanol 3 5 4 0.72 0.73 

65-85-0 Benzoic acid 3 2 2 0.80 0.39 

91-94-1 3,3'-dichlorobenzidine 3 93 78 0.83 1.97 

98-86-2 Acetophenone 2 6 2 0.40 0.80 

106-42-3 p-xylene (Benzene, 1,4-dimethyl-) 3 19 11 0.57 1.29 

107-21-1 Ethylene glycol 3 8 5 0.66 0.92 

108-67-8 1,3,5-trimethylbenzene 3 9 8 0.87 0.97 

120-80-9 Catechol 2 4 4 1.06 0.60 
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Table 2. General equations used to derive estimates of aerobic environmental 
biodegradation half-lives from BIOWIN model output. These do not include suggested 

“restrictions” for the low numerical output of chemicals that are modeled to be very 
persistent. 

 

BIOWIN Model Regression Equation r2 

B1 - linear BIODEG y = -1.32x + 2.24 0.72 

B3 - USM y = -1.07x + 4.20 0.77 

B4 - PSM y = -1.46x + 6.51 0.78 

B5 - linear MITI y = -1.86x + 2.23 0.58 
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Table 3. A “round robin” comparison of different BIOWIN model scenarios to 110 
empirical half-lives. 

BIOWIN 
Model 
Combination r2 slope 

factor ± 
10 factor ± 5 factor ± 3 factor ± 2 

1,3,4,5 0.56 0.71 97 93 78 58 

1,3,4 0.57 0.75 97 89 77 55 

1,3,5 0.54 0.68 97 95 77 55 

1,4,5 0.54 0.69 98 92 76 56 

1,3 0.57 0.73 97 92 82 56 

1,4 0.56 0.75 97 88 75 55 

1,5 0.51 0.64 98 93 73 52 

3,4 0.56 0.76 98 88 76 54 

3,5 0.5 0.66 96 94 71 54 

4,5 0.52 0.69 98 92 70 52 
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Figure 1. The distribution of log transformed empirical biodegradation half-lives for 
40 chemicals used as a “training set” to calibrate the BIOWIN models. 
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Figure 2. Log-linear regressions of BIOWIN model output to empirical aerobic half-
life data and equations used to extrapolate “environmentally relevant” aerobic half-

life data. 
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Figure 2. Continued 
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Figure 3. The distribution of log empirical half-lives used in the “evaluation set” to 
assess the proposed BIOWIN extrapolation method. 
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Figure 4. A comparison of estimated half-lives using the average calibrated output 
from the four BIOWIN models and empirical aerobic biodegradation half-lives. The 

black line represents a 1:1 ratio and the gray lines represent ± factors of 3 and 10. 
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Figure 5. Estimated biodegradation half-lives from the modified BIOWIN models, 
CATABOL and available empirical data. (error bars represent the 95% CL) 
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Figure 5. Continued 
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Figure 6. Numerical output comparisons of BIOWIN models for 10,600 diverse 
chemicals. 
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Figure 6. Continued 
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Figure 7. Distributions of BIOWN 1, 3, 4, 5 output for organic chemicals on the DSL. 
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Figure 8. A plot of the residuals of BIOWIN model output against molecular weight. 
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Figure 9. An example of the “slide rule” approach for half-life estimation from 
different sources. 
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Appendix 

Table A-1. A list and statistical summary of empirical aerobic environmental half-
lives for 75 chemicals included in the estimation method evaluation. 

   Empirical 
t1/2 (d)   log 

CAS Chemical name n Arithmetic 
mean STDEV CV Mean 

84-74-2 Dibutylphthalate (DBP) 9 8 8 1.00 0.88 

117-81-7 Di-(2-ethylhexyl)-phthalate (DEHP) 9 21 10 0.47 1.32 

1582-09-8 Trifluralin 7 106 43 0.41 2.03 

60-57-1 Dieldrin 6 792 491 0.62 2.90 

95-48-7 o-cresol 5 6 5 0.74 0.79 

330-55-2 Linuron 6 111 87 0.78 2.05 

12789-03-6 Chlordane 6 1072 1328 1.24 3.03 

60-51-5 Dimethoate 5 18 22 1.24 1.25 

62-53-3 Aniline 4 14 11 0.76 1.15 

75-09-2 Dichloromethane/methylenechloride  4 30 18 0.60 1.48 

309-00-2 Aldrin 5 161 245 1.52 2.21 

1897-45-6 Chlorothalonil 5 49 33 0.68 1.69 

2921-88-2 Chloropyrifos 5 69 53 0.76 1.84 

21725-46-2 Cyanazine (Bladex) 5 38 41 1.08 1.58 

67-72-1 Hexachloroethane 3 138 96 0.70 2.14 

85-01-8 Phenanthrene 4 67 89 1.34 1.82 

94-75-7 2-(2,4-dichlorophenoxy)acetic acid 4 21 27 1.30 1.32 

95-77-2 3,4-dichlorophenol 4 18 23 1.29 1.25 

110-82-7 Cyclohexane 3 79 78 0.99 1.90 

114-26-1 Propoxur 4 25 19 0.77 1.39 

120-12-7 Anthracene 4 174 195 1.12 2.24 

121-75-5 Malathion 4 20 23 1.14 1.31 

133-06-2 Captan 4 19 28 1.49 1.27 

218-01-9 Chrysene 4 532 312 0.59 2.73 

330-54-1 Diuron 4 101 147 1.45 2.01 

333-41-5 Diazinon 4 43 40 0.93 1.64 
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   Empirical 
t1/2 (d)   log 

CAS Chemical name n Arithmetic 
mean STDEV CV Mean 

2303-16-4 Diallate 4 46 35 0.75 1.66 

2303-17-5 Triallate 4 106 79 0.74 2.03 

33820-53-0 Isopropalin 4 63 49 0.79 1.80 

95-47-6 o-xylene (Benzene, 1,2-dimethyl-) 3 22 13 0.60 1.35 

95-63-6 1,2,4-trimethylbenzene 2 18 15 0.85 1.24 

108-38-3 m-xylene (Benzene, 1,3-dimethyl-) 3 19 11 0.57 1.29 

117-84-0 DNOP 3 14 12 0.83 1.16 

132-64-9 Dibenzofuran 3 52 61 1.17 1.72 

314-40-9 Bromacil 3 240 159 0.66 2.38 

123-38-6 Propanal 2 4 4 1.06 0.60 

75-00-3 Chloroethane 2 18 15 0.85 1.24 

100-42-5 Styrene 2 21 10 0.47 1.32 

591-78-6 2-hexanone 1 5 0 0.00 0.70 

106-48-9 4-chlorophenol 2 20 0 0.01 1.30 

628-63-7 Pentyl acetate 2 12 2 0.18 1.06 

96-22-0 3-pentanone 2 8 4 0.47 0.88 

759-94-4 EPTC 2 30 0 0.00 1.48 

80-62-6 Methyl methacrylate 2 18 15 0.85 1.24 

86-73-7 Fluorene 2 46 20 0.43 1.66 

98-82-8 Isopropylbenzene (Cumene) 1 57 N/A N/A 1.75 

105-67-9 2,4-dimethylphenol 2 4 4 1.06 0.60 

83-32-9 Acenapthene 2 57 63 1.11 1.76 

122-39-4 Diphenylamine 2 15 19 1.29 1.17 

120-83-2 2,4-dichlorophenol 2 6 4 0.70 0.74 

298-00-0 Parathion-methyl 2 43 39 0.92 1.63 

88-06-2 2,4,6-trichlorophenol 2 39 45 1.16 1.59 

111-44-4 Bis(2-chloroethyl)ether 2 104 107 1.03 2.02 

58-90-2 2,3,4,6-tetrachlorophenol 2 98 99 1.01 1.99 

107-06-2 1,2-dichloroethane 2 140 57 0.40 2.15 
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   Empirical 
t1/2 (d)   log 

CAS Chemical name n Arithmetic 
mean STDEV CV Mean 

56-23-5 Carbon tetrachloride (CCl4) 2 270 127 0.47 2.43 

50-29-3 p,p'-DDT 5 2872 2326 0.81 3.46 

75-25-2 Tribromomethane 2 104 107 1.03 2.02 

95-50-1 1,2-dichlorobenzene 2 104 107 1.03 2.02 

115-29-7 Endosulfan 5 52 84 1.62 1.71 

79-34-5 1,1,2,2-tetrachloroethane 3 93 78 0.84 1.97 

191-24-2 Benzo[ghi]perylene 2 620 42 0.07 2.79 

72-20-8 Endrin 2 2262 2882 1.27 3.35 

106-46-7 1,4-dichlorobenzene 2 104 107 1.03 2.02 

86-30-6 Diphenyl nitrosamine 2 22 17 0.77 1.34 

67-66-3 Trrichloromethane/chloroform (CHCl3) 2 104 107 1.03 2.02 

56-38-2 Parathion 2 21 20 0.94 1.32 

98-95-3 Nitrobenzene 2 105 130 1.23 2.02 

87-62-7 2,6-xylidine 2 104 107 1.03 2.02 

122-14-5 Fenitrothion 2 18 14 0.79 1.26 

108-90-7 Chlorobenzene 2 109 58 0.53 2.04 

37680-65-2 PCB18 2 43 0 0.00 1.63 

75-69-4 Trichlorofluoromethane 2 264 136 0.51 2.42 

127-18-4 Tetrachloroethylene 2 270 127 0.47 2.43 

77-47-4 1,3-cyclopentadiene, 1,2,3,4,5,5-
hexachloro- 2 18 15 0.85 1.24 
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Table A-2. List of chemicals used in Figure 5 for the comparison of estimated aerobic 
biodegradation half-lives using the modified BIOWIN method and CATABOL and 

empirical data. 

CAS Chemical name 

72-20-8 Endrin 

115-29-7 Endosulfan 

1582-09-8 Trifluralin 

118-74-1 Hexachlorobenzene 

67-72-1 Hexachloroethane 

33820-53-0 Isopropalin 

77-47-4 1,3-Cyclopentadiene, 1,2,3,4,5,5-hexachloro-  

91-94-1 3,3-dichlorobenzidine  

87-86-5 Pentachlorophenol 

58-89-9 γ-HCH (lindane) 

32598-13-3 PCB-77 

35693-99-3 PCB-52 

72-55-9 DDE 

191-24-2 Benzo[ghi]perylene 

1897-45-6 Chlorothalonil 

2303-17-5 Triallate 

21725-46-2 Cyanazine (Bladex) 

207-08-9 Benzo[k]fluoranthene 

50-32-8 Benzo[a]pyrene 

1746-01-6 2,3,7,8-TCDD  

218-01-9 Chrysene 

56-55-3 Benz[a]anthracene 

133-06-2 Captan 

1912-24-9 Atrazine 

72-43-5 Methoxychlor 

2921-88-2 Chloropyrifos 

129-00-0 Pyrene 

206-44-0 Fluoranthene 

58-90-2 2,3,4,6-TECP 
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CAS Chemical name 

37680-65-2 PCB-18 

121-14-2 2,4-dinitrotoluene  

122-34-9 Simazine 

2303-16-4 Diallate 

56-23-5 Carbon tetrachloride 

330-55-2 Linuron 

120-82-1 1,2,4-trichlorobenzene  

79-34-5 1,1,2,2-tetrachloroethane  

330-54-1 Diuron 

95-95-4 2,4,5-trichlorophenol  

88-06-2 2,4,6-trichlorophenol  

122-14-5 Fenitrothion 

127-18-4 Tetrachloroethylene 

298-00-0 Parathion-methyl 

75-69-4 Trichlorofluoromethane 

86-30-6 Diphenyl nitrosamine 

56-38-2 Parathion 

108-60-1 Bis(2-chloroisopropyl)ether 

314-40-9 Bromacil 

111-44-4 Bis(2-chloroethyl)ether 

106-46-7 1,4-dichlorobenzene  

96-18-4 1,2,3-trichloropropane  

120-12-7 Anthracene 

85-01-8 Phenanthrene 

116-06-3 Aldicarb 

79-01-6 Trichloroethylene 

93-76-5 2,4,5-trichlorophenoxyacetic acid  

67-66-3 Trrichloromethane/chloroform 

120-83-2 2,4-dichlorophenol  

95-77-2 3,4-dichlorophenol  

122-39-4 Diphenylamine 
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CAS Chemical name 

333-41-5 Diazinon 

1563-66-2 Carbofuran 

75-25-2 Tribromomethane 

63-25-2 Carbaryl 

98-95-3 Nitrobenzene 

1918-00-9 Dicamba 

83-32-9 Acenapthene 

91-20-3 Naphthalene 

87-62-7 2,6-xylidine  

78-87-5 1,2-dichloropropane  

86-73-7 Fluorene 

114-26-1 Propoxur 

107-06-2 1,2-dichloroethane  

132-64-9 Dibenzofuran 

75-09-2 Dichloromethane/methylenechloride 

62-53-3 Aniline 

71-43-2 Benzene 

94-75-7 2-(2,4-dichlorophenoxy)acetic acid  

108-90-7 Chlorobenzene 

106-48-9 4-chlorophenol 

759-94-4 EPTC 

91-22-5 Quinoline 

108-67-8 1,3,5-trimethylbenzene  

95-63-6 1,2,4-trimethylbenzene  

92-52-4 Biphenyl 

98-82-8 Isopropylbenzene (Cumene) 

100-41-4 Ethylbenzene 

75-01-4 Chloroethene (Vinyl chloride) 

75-00-3 Chloroethane 

7085-19-0 Mecoprop 

108-38-3 m-xylene 
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CAS Chemical name 

95-47-6 o-xylene 

105-67-9 2,4-dimethylphenol  

100-42-5 Styrene 

60-51-5 Dimethoate 

98-86-2 Acetophenone 

108-88-3 Toluene 

95-48-7 o-cresol 

110-82-7 Cyclohexane 

96-22-0 3-pentanone 

108-95-2 Phenol 

120-80-9 Catechol 

65-85-0 Benzoic acid 

591-78-6 2-hexanone 

80-62-6 Methyl methacrylate 

64-17-5 Ethanol 

84-66-2 Diethylphthalate (DEP) 

121-75-5 Malathion 

85-68-7 Butyl benzyl phthalate (BBP) 

131-11-3 Dimethylphthalate (DMP) 

123-38-6 Propanal 

117-81-7 Di-(2-ethylhexyl)-phthalate (DEHP) 

628-63-7 Pentyl acetate 

107-21-1 Ethylene glycol 

117-84-0 DNOP 

84-74-2 Dibutylphthalate (DBP) 
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Table A-3. Summary of physical chemical properties and chemical structures for BIOWIN model calibrations. 

CAS Name MW log Kow VP Sw Chemical Structure 

  (g/mol)  (Pa) (mg/L)  

71432 Benzene 78.11 2.13 1.16E+04 2.00E+03 

 

  

84662 Diethylphthalate (DEP) 222.24 2.42 3.39E-01 2.87E+02 

 

  

87865 Pentachlorophenol 266.34 5.12 1.44E-03 3.09E+00 
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O

O O

O

Cl
Cl

Cl
Cl

Cl
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93765 
2,4,5-

trichlorophenoxyacetic 
acid 

255.49 3.31 9.36E-04 8.16E+01 

 

  

108952 Phenol 94.11 1.46 4.31E+01 2.62E+04 

 

  

1912249 Atrazine 215.69 2.61 3.81E-03 2.14E+02 

 

  

O

O
O

Cl
Cl

Cl

O

N N

N N

N

Cl
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85687 Butyl benzyl phthalate 
(BBP) 312.37 4.73 5.87E-03 9.49E-01 

 

  

100414 Ethylbenzene 106.17 3.15 1.01E+03 2.29E+02 

 

  

106445 p-cresol 108.14 1.94 1.65E+01 9.25E+03 

 

  

58899 γ-HCH (lindane) 290.83 3.72 6.75E-02 4.04E+00 

 

  

O

O

O

O

O

Cl
Cl

Cl
Cl

Cl

Cl
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63252 Carbaryl 201.23 2.36 7.11E-03 4.16E+02 

 

  

76448 Heptachlor 373.32 5.47 3.17E-02 2.76E-02 

 

  

91203 Naphthalene 128.18 3.30 5.39E+00 1.42E+02 

 

  

O

ON

Cl

Cl Cl

ClCl
Cl

Cl
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91225 Quinoline 129.16 2.03 7.19E+00 1.71E+03 

 

  

95954 2,4,5-trichlorophenol 197.45 3.72 6.76E-01 1.14E+02 

 

  

116063 Aldicarb 190.26 1.13 6.44E-01 5.31E+03 

 

  

N

O

Cl
Cl

Cl

O O
N

S
N
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118741 Hexachlorobenzene 284.78 5.73 4.07E-04 1.92E-01 

 

  

122349 Simazine 201.66 2.18 1.22E-03 5.90E+02 

 

  

131113 Dimethylphthalate (DMP) 194.19 1.60 6.16E-01 2.01E+03 

 

  

Cl
Cl

Cl
Cl

Cl

Cl

N N

N N

N

Cl

O

O

O O
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1563662 Carbofuran 221.26 2.32 7.39E-03 3.54E+02 

 

  

1746016 2,3,7,8-TCDD 321.98 6.80 2.60E-06 1.10E-03 

 

  

1918009 Dicamba 221.04 2.21 7.05E-03 4.41E+02 

 

  

O

O
ON

Cl O Cl

ClOCl

O
Cl

Cl

O

O
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50328 Benzo[a]pyrene 252.32 6.13 2.65E-06 1.04E-02 

 

  

56553 Benz[a]anthracene 228.30 5.76 3.63E-05 2.91E-02 

 

  

72435 Methoxychlor 345.66 5.08 5.56E-03 3.02E-01 

 

  

O O

Cl
Cl Cl
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75014 Chloroethene (Vinyl 
chloride) 62.50 1.62 3.63E+05 5.63E+03 

 

  

108601 Bis(2-
chloroisopropyl)ether 171.07 2.48 9.15E+01 4.63E+02 

 

  

108883 Toluene 92.14 2.73 3.16E+03 5.73E+02 

 

  

120821 1,2,4-trichlorobenzene 181.45 4.02 2.44E+01 2.00E+01 

 

  

121142 2,4-dinitrotoluene 182.14 1.98 9.59E-02 4.46E+02 

 

  

Cl

O
Cl Cl

Cl
Cl

Cl

O
N
O

N
O O
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206440 Fluoranthene 202.26 5.16 4.17E-04 1.30E-01 

 

  

7085190 Mecoprop 214.65 3.13 6.08E-02 1.94E+02 

 

  

64175 Ethanol 46.07 -0.31 8.12E+03 7.92E+05 
 

  

65850 Benzoic acid 122.12 1.87 3.97E-01 2.49E+03 

 

  

O

O
O

Cl

O

O

O
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91941 3,3'-dichlorobenzidine 253.13 3.51 5.55E-04 2.29E+01 

 

  

98862 Acetophenone 120.15 1.58 4.35E+01 4.48E+03 

 

  

106423 p-xylene (Benzene, 1,4-
dimethyl-) 106.17 3.15 9.16E+02 2.29E+02 

 

  

107211 Ethylene glycol 62.07 -1.36 1.23E+01 1.00E+06 
 

  

N

N
Cl

Cl

O

O
O
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108678 1,3,5-trimethylbenzene 120.20 3.42 2.68E+02 1.20E+02 

 

  

120809 Catechol 110.11 0.88 1.52E-01 7.32E+04 

 

  
 
 

O
O




